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Intermingled basins and on-off intermittency in a multistate system
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We consider a dynamical system containing infinite low-dimensional symmetric invariant subspaces, each of
which has a chaotic state. Intermingled basins are found between these multiple chaotic states when they are
stable in the subspaces. As a parameter of the system varies, the largest Lyapunov exponent transverse to the
invariant subspace can change from negative to positive; then, the system dynamics changes from an inter-
mingled basin state to a multistate on-off intermittency. The statistical behavior and physical transportation
property for different dynamic states are investigated in detail.

PACS numbd(s): 05.45-a

[. INTRODUCTION which is periodic in they direction. The equation of motion
reads
Recently, the phenomena of riddled basin and on-off in- G
termittency in chaotic dynamical systems have become an WX=—75X—VV(X)+fo sin(wt) Xo, ()

area of intensive studiyl—5]. Near certain critical situation,

the basin of a chaotic attractor in an invariant subspace mayhere y is the friction coefficientX=(x,y), andX, is the

be riddled with holes belonging to the basin of another atynit vector in thex direction. We can specify Eq2) by five
tractor. The phenomenon of a riddled basin is in fact relatedirst-order autonomous differential equations in terms of the

to the phenomenon of on-off intermitten¢g—20], which dynamical variablesx,v,=dx/dt, y,v,=dy/dt, and z
refers to the situation where some dynamical variable exhib=" ;-

its two distinct states with time evolution: one is the “off”

. ; . d
state, where the variable remains approximately a constant, —X=0Uy,
and the other is the “on” state, where the variable tempo- dt
rarily bursts out of the “off” state. d
A more extreme type of riddled basin structure called in- qivx=~ Yo+ 4X(1—x?)—cos y+fgsinz,
termingled basins has been investigafd®@—20. In this
case, two basins of attraction are riddled by each other, d
which usually occurs when there are two invariant subspaces ay—vy,
in the system which are attracting. There is no other attractor
apart from the mutually riddled ones. Related to the inter- d

mingled basins, a type of intermittent behavior, referred toas ~ g;Vy= — Y0y T Sin(2y)(x—d)+4bsiny cos'y,
two-state on-off intermittency, can be seen. Lai and Grebogi

[19] have studied these phenomena, using a mechanical sys- d

tem where a particle moves under the influence of a two-well mZ=W- (©)]
potential in the(x,y) plane, subjected to friction and periodic

forcing of the formf, sinfwt) in the x direction. Note that aty=nm— /2 (neZ), we have cog=0. There-

In this paper we go further froffl9] to consider a system fgre, the sets
with infinite subspaces, which shows multistate intermingled
basins and multistate on-off intermittency. The significant y=nm—ml2(neZ), v,=0 4)
points are that we are able to study the statistical behavior . )
among the infinitely many intermingled basins and reveal thé@re the invariant subspaces of the system, and the number of
transport property in these distributed invariant subspaceiese invariant subspaces is infinite. The equation of motion
when on-off intermittency sets in, which are of physical im-in any such subspace describes a forced-damped Duffing os-
portance and beyond observations so far in the study of twd-illator:
or finite-state intermingled basins and on-off intermittencies.

d —_—
v
II. MODEL
d
We consider a system with a particle moving in the fol- JEUx= 0kt 4x(1—x2) + fo sinz,
lowing potential:
d —
V(x,y)=(1-x%)2+cody(x—d)+bcody, (1) Gi=w (5)
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0.08 ” T ” T ” T g T g subspaces. However, the motions on these subspaces are al-
. ways unstable in the transverse direction under our param-
0.06 | / . eters, which will not be considered in this paper. In the fol-
L /\- ] lowing we will consider intermingled basins and on-off
0.04 4 intermittency in systent3). Since we have an infinite num-
i / | ber of invariant subspaces, some new and interesting prob-
002 J lems arise, such as probabilities for the system to reach dif-
= I / ] ferent subspaces when an intermingled basin appears and the

transport behavior of the system when on-off intermittency

0.00 /
i H—/ ] occurs.

-0.02 -__\././-\.fh.;-_./*-"'/ 4

lll. STATISTICS OF MULTI-INTERMINGLED BASINS

-0.04 n 1 n 1 n 1 2 1 2
3.5 -3.0 2.5 -2.0 15 -1.0 The largest Lyapunov exponeht transverse to the in-
d variant manifold(4) can be easily computed. We obtain
FIG. 1. The largest Lyapunov exponeht transverse to the d

invariant subspaces is plotted vs the parametdor de[ —3.5, — Sy=bv

—1.0], in which h, changes from negative to positive df dt y:

=-—1.75.

. d .
We setfy=2.3, y=0.05, andw=3.5; then, the attractor in at ovy=—yév,—2[X(t)—d]dy, (6)

these invariant subspaces is chaotic. To ensure that the full

system does not have other attractors, we chbes@.008. It

should be noticed that whep=nw(neZ), we have sity  whereX(t) is a chaotic trajectory produced by E§) in the
=0; then, the sety=nw(neZ), v,=0 are also invariant invariant subspaces, acting like a driving signal in Eg).
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FIG. 2. (a), (b) The typical time sequencies gfandv, vst, respectively, withd=—1.85.(c) The projection of the system motion in the
X-vy plane.
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FIG. 3. The basins of attractors at n7— m/2(ne Z), v,=0 plotted for different state number(n is from —4 to 4). For the indicated
initial conditions taken from the two-dimensional regierl<[x,y]<1, v,=v,=0.1, the system approaches the correspondthgattrac-
tor. d=—1.85, and the total particle number is 40 000.

The exponent h, is computed via h, =lim, . (1/ Now the problem we are most interested in is to which
£)In[&)/&0)], where 8(t)= \/5y(t)2+[5vy(t)]2 In what invariant subspace the system asymptotically approaches if it
follows we will vary d and examine the dynamics in a region Starts from an arbitrary initial condition. Figure 3 shows the
whereh, changes its sign. basins of attractors in the subspacesn#— w/2(neZ),
Figure 1 shows the largest transverse Lyapunov exponemt,=0 with different state number (n is from —4 to 4 for
h, vs the parameted for de[—3.5—1.0] in which h,  the initial conditions taken in the two-dimensional region
changes from negative to positive df=—1.75. Whend —1<[x,y]<1, withv,=v,=0.1. The dots in different fig-
>d, slightly (we choosal=—1.70), the system shows mul- ures represent the initial conditions from which the corre-
tistate on-off intermittency; whilel<d, slightly (we choose sponding attractors are asymptotically approached. Appar-
d=—1.85), the system has multistate intermingled basinsently, the basins of attractors are intermingled, since in an
d=d. is just the blowout bifurcation point in our case. arbitrarily small vicinity of the basin of any given attractor
As the parameted is a bit smaller thaml., h, is slightly ~ one can surely find initial conditions from which the system
smaller than zero and the chaotic motions in the invariangpproaches other attractqeee Figs. 3 and)4We have tried
subspaces are transversely stable; then, multistate inte40 000 initial conditions arbitrarily chosen in the region of
mingled basins can be observed. In Fig. 2, by fixidg Fig. 3 and count the number of initial conditions from which
=—1.85, typical time series ofy(t) [2(@] and v (t) the system can reach different attractors. The distribution of
[2(b)] from an arbitrary initial condition are plotted. Figure these initial conditiondN,, is plotted in Fig. %a), which fol-
2(c) shows the projection of the motion in thev, plane. lows a nice exponential decay "' [see also Fig. ®)]. It
It shows a typical chaotic attractor of a forced-dampedshows that the particle can run very far away from the start-
Duffing oscillator (5). Sinced is slightly smaller thard,, ing region. When we take the region of Fig. 4 for our count-
after a certain transient the typical trajectory approacheg, the exponential relation remains the same; i.e., this ex-
one of invariant subspaces, which is a chaotic system ofonential decay law is an intrinsic and scaling invariant
Eqg. (5). feature of the system.
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FIG. 4. The same as Fig. 3 with0.1<[x,y]=<0.1,v,=v,=0.1 taken for the initial distribution. The riddled basin structure is further
confirmed.

IV. TRANSPORT PROPERTY OF THE ON-OFF
INTERMITTENCY STATE

intermittent behavior: a typical trajectory spends a long
time near one of the invariant subspaces and is repelled away
from this set, then can be attracted to another invariant sub-
As the parameted increases througll,, h, becomes space, and then repeats this on-off procedure again. In Fig. 6
slightly larger than zero and the motions in the invariantby fixing d=—1.70, typical time series of(t) [6(a)] and
subspaces are no longer transversely stable. This leads to ay(t) [6(b)] from an arbitrary initial condition are plotteg.
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FIG. 5. (@) The particle numbeN,, vs the index of the invariant subspaags(b) The
e "', with r=0.18.

semilogarithm of Iny,) vs n(50=n=1), N,
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FIG. 6. (a), (b) The typical time sequencies gfandv, vst, respectively, wittd= —1.70. They show obviously on-off intermittency. In
particular, the steplike behavior g{t) in () manifests the characteristic of random walk in various states at multistate on-off intermittency.
(c) The projection of the motion in the-v, plane, which is almost the same as Fi(c)2

andv, are obviously of multistate on-off intermittency and tency @=—1.70). We run an ensemble of systems and
consequentlyy(t) has a steplike behavior which shows a count how the occupations of different invariant subspaces
typical random walk motion among different invariant sets.Vary as time. For smalf, d=—1.85, Figs. &), 8(b), 8(c),
Figure c) shows the projection picture in thev, plane. It ~and 8&d) show the occupation distribution at=50, 100,
still shows the typical chaotic attractor of a forced-dampedl000, and 4000, respectively. The initial conditions are also
Duffing oscillator (5) the same as Fig. (8. Sinced is
slightly larger thand,, the typical trajectory costs the most 11
time near various invariant subspaces.

As the particle performs characteristic Brownian motion
in Fig. 6(a) when multistate on-off intermittency takes place, 9
it is interesting to study its transport property. We choose
2000 initial values withx, y, vy, andv, all being random |
numbers between-1 and 1, and plot the relation between 7

10

In{y(t)) and Int. In Fig. 7 the relation obeys the following N/\ 6
nice power law: > !
My 5
2 2H c -
(yA(t))oet™, () = 4
where H is the Hurst exponent which must satisfy<® 3_
< 1. In our case we gdtl =0.46, which is close to the expo- ol v o+ v . 1
nent for ordinary Brownian motiorH = 1/2. = 4 4 5§ & 7 & ¥ 0 N
Now we can compare the statistic behaviors of the systerr In(t)

for different evolution stages in different situations: the
situation exhibiting multistate intermingled basingd ( FIG. 7. d=—1.70, Iny*(t)) vs Int. Diffusion with the Hurst
= —1.85) and the other exhibiting multistate on-off intermit- exponentd =0.46 is observed.
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FIG. 8. (8)—(d) The dynamic statistics df, vs the state numbenm, at different timest=50, 100, 1000, and 4000, respectivetly.
= —1.85, and the total particle number is 10 000.

taken from the two-dimensional regionl<[Xx,y]=<1, with Clearly, at an early time, all of the particles concentrate at
vx=vy,=0.1; the total particle number is 10 000. We identify small n due to the choices of initial conditions. Then the
the occupation at thath invariant setN,(t) as the number particles start diffusing because of the intermingled basin
of particles located in betweenn{1)w<y(t)<nr. structure. While the diffusion velocity dampens with time,
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FIG. 9. (a)—(d) The same as Fig. 8, with=200, 1000, 10 000, and 40 000, respectively. —1.70, and the total particle number is 1600.
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FIG. 10. (a), (b) The typical time sequencies gfandv, vst, respectively, withd=—1.0,f;=2.0. f,=2.0 determines that there is a
limit circle in each of the invariant subspaces, whdle — 1.0 determines that the invariant subspaces are all transversely stablbe

projection of the motion in th&-v, plane.
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FIG. 11. (8—(d) The same as Fig. 8, witt=20, 100, 1000, and 4000, respectivaly= — 1.0, f;=2.0, and the total particle number is

1600.
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FIG. 12. (a)—(c) The same as Fig. 10, with= — 0.6, which shows that the transverse direction is unstable. After the transient, the particle
stays near one of the invariant unstable subspaces and oscillates there forever.

for t—o0, we get a stationary statistic distribution just like Now the occupationdN,(t) do not approach a peaked and

Fig. 5. Ford=—1.70, on-off intermittency becomes valid.
Figures %9a), 9(b), 9(c), and 9d) show the occupation distri-

localized distribution: rather, the distribution flattens as time,
and fort— o the density of distribution becomes zero for all

butions att=200, 1000, 10000, and 40000, respectively.n and the particles can diffuse to infinity.
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FIG. 13. (a)—(d) The same as Fig. ¢l=—
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V. STATISTICS AND TRANSPORT FOR THE PERIODIC 13 att=20, 100, 1000, and 4000, respectively. We find that

BASIC STATE the distribution approaches a finite stationary exponential
I,fgstribution, and this localized distribution presents a striking
contrast to the distribution in Fig. 9 which flattens to zero as
time goes to infinity.

In all the above sections we considered cases where t
motion in the invariant subspaces is chadfa. 2(c)]. It is
worthwhile investigating what happens if the motion in the
invariant subspace is periodic. Now we takg=2.0; then,
the motion in the invariant subspaces is a limit circle. In Fig.
10, by fixingd= — 1.0, the transverse direction is stable. We VI. CONCLUSION

get typical time behaviors of(t) [10(@)] andv,(t) [10(b)] In summary, we have presented a physical model which

from an arbitrary initial condition. Figure 16 shows the o, pinits intermingled basins and on-off intermittency of mul-
projection of the system trajectory in thev, plane, and itis  {j5|e coexisting states when a single parameter is varied. We
a limit circle indeed. In Figs. 1@, 11(b), 11(c), and 11d),  finq that infinitely many basins of attractors can be riddled
we get the occupation distributions at thén invariant set y each other when the motions on the attractors are chaotic,
Np(t) att=20, 100, 1000, and 4000, respectively, in & simi- 5 the system can wander among infinite states when on-off
lar way as Fig. 8. The total particle number is 1600. We findinermittency occurs. With multistate intermingled basins we
also an exponential distribution; however, we should emphapaye a distribution diagram which shows clearly an exponen-
size that basins of different attracting sets are now no 10nge&f,| gecay of the occupation distribution while in the case of
riddled by each other, but the fractal nature of the basins cag,tistate on-off intermittency the particle performs Brown-
be observed. Foui_=—(_).6, the_transverse direction becomesizn motion in they direction. In Refs.[21] and [22], the
unstable, and typical time seriesyfft) andv,(t) are plotted  athors studied the chaotic itinerancy phenomenon between
in Figs. 12a) and 12b), respectively. After the transient, the attractor ruins. Here our approach has been to address the
particle stays near one of the invariant unstable subspacegstribution property and transportation behavior in the pres-

and oscillates there. The dynamical behavior is essentiallgnce of multi-intermingled basins and on-off intermittency.
different from the multistate on-off intermittency when a

strange chaotic attractor in each invariant subspace is identi- This research was supported by the National Natural Sci-
fied (Fig. 6), which is a fractional Brownian motion in the  ence Foundation of China, the Nonlinear Science Project of
direction. Similar to computing the occupation distributionsChina, and the Foundation of Doctoral training of the Edu-
in Fig. 9, we plot diagrams of the periodic basic state in Fig.cational Bureau of China.
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