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Intermingled basins and on-off intermittency in a multistate system
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We consider a dynamical system containing infinite low-dimensional symmetric invariant subspaces, each of
which has a chaotic state. Intermingled basins are found between these multiple chaotic states when they are
stable in the subspaces. As a parameter of the system varies, the largest Lyapunov exponent transverse to the
invariant subspace can change from negative to positive; then, the system dynamics changes from an inter-
mingled basin state to a multistate on-off intermittency. The statistical behavior and physical transportation
property for different dynamic states are investigated in detail.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

Recently, the phenomena of riddled basin and on-off
termittency in chaotic dynamical systems have become
area of intensive study@1–5#. Near certain critical situation
the basin of a chaotic attractor in an invariant subspace
be riddled with holes belonging to the basin of another
tractor. The phenomenon of a riddled basin is in fact rela
to the phenomenon of on-off intermittency@6–20#, which
refers to the situation where some dynamical variable ex
its two distinct states with time evolution: one is the ‘‘off
state, where the variable remains approximately a cons
and the other is the ‘‘on’’ state, where the variable temp
rarily bursts out of the ‘‘off’’ state.

A more extreme type of riddled basin structure called
termingled basins has been investigated@18–20#. In this
case, two basins of attraction are riddled by each ot
which usually occurs when there are two invariant subspa
in the system which are attracting. There is no other attra
apart from the mutually riddled ones. Related to the int
mingled basins, a type of intermittent behavior, referred to
two-state on-off intermittency, can be seen. Lai and Greb
@19# have studied these phenomena, using a mechanical
tem where a particle moves under the influence of a two-w
potential in the~x,y! plane, subjected to friction and period
forcing of the formf 0 sin(wt) in the x direction.

In this paper we go further from@19# to consider a system
with infinite subspaces, which shows multistate interming
basins and multistate on-off intermittency. The significa
points are that we are able to study the statistical beha
among the infinitely many intermingled basins and reveal
transport property in these distributed invariant subspa
when on-off intermittency sets in, which are of physical im
portance and beyond observations so far in the study of t
or finite-state intermingled basins and on-off intermittenci

II. MODEL

We consider a system with a particle moving in the f
lowing potential:

V~x,y!5~12x2!21cos2 y~x2d!1b cos4 y, ~1!
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which is periodic in they direction. The equation of motion
reads

d2

dt2
X52g

d

dt
X2¹V~X!1 f 0 sin~wt!X0 , ~2!

whereg is the friction coefficient,X5(x,y), andX0 is the
unit vector in thex direction. We can specify Eq.~2! by five
first-order autonomous differential equations in terms of
dynamical variablesx,vx5dx/dt, y,vy5dy/dt, and z
5vt:

d

dt
x5vx ,

d

dt
vx52gvx14x~12x2!2cos2 y1 f 0 sinz,

d

dt
y5vy ,

d

dt
vy52gvy1sin~2y!~x2d!14b siny cos3 y,

d

dt
z5w. ~3!

Note that aty5np2p/2 (nPZ), we have cosy50. There-
fore, the sets

y5np2p/2~nPZ!, vy50 ~4!

are the invariant subspaces of the system, and the numb
these invariant subspaces is infinite. The equation of mo
in any such subspace describes a forced-damped Duffing
cillator:

d

dt
x5vx ,

d

dt
vx52gvx14x~12x2!1 f 0 sinz,

d

dt
z5w. ~5!
375 ©2000 The American Physical Society
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We set f 052.3, g50.05, andv53.5; then, the attractor in
these invariant subspaces is chaotic. To ensure that the
system does not have other attractors, we chooseb50.008. It
should be noticed that wheny5np(nPZ), we have siny
50; then, the setsy5np(nPZ), vy50 are also invariant

FIG. 1. The largest Lyapunov exponenth' transverse to the
invariant subspaces is plotted vs the parameterd for dP@23.5,
21.0#, in which h' changes from negative to positive atdc

521.75.
ull

subspaces. However, the motions on these subspaces a
ways unstable in the transverse direction under our par
eters, which will not be considered in this paper. In the f
lowing we will consider intermingled basins and on-o
intermittency in system~3!. Since we have an infinite num
ber of invariant subspaces, some new and interesting p
lems arise, such as probabilities for the system to reach
ferent subspaces when an intermingled basin appears an
transport behavior of the system when on-off intermitten
occurs.

III. STATISTICS OF MULTI-INTERMINGLED BASINS

The largest Lyapunov exponenth' transverse to the in-
variant manifold~4! can be easily computed. We obtain

d

dt
dy5dvy ,

d

dt
dvy52gdvy22@ x̂~ t !2d#dy, ~6!

wherex̂(t) is a chaotic trajectory produced by Eq.~5! in the
invariant subspaces, acting like a driving signal in Eq.~6!.
e
FIG. 2. ~a!, ~b! The typical time sequencies ofy andvy vs t, respectively, withd521.85.~c! The projection of the system motion in th
x-vx plane.
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FIG. 3. The basins of attractors aty5np2p/2(nPZ), vy50 plotted for different state numbern ~n is from 24 to 4!. For the indicated
initial conditions taken from the two-dimensional region21<@x,y#<1, vx5vy50.1, the system approaches the correspondingnth attrac-
tor. d521.85, and the total particle number is 40 000.
n

ne

l-

in

an
nt

e

e

he

ch
if it

he

n

re-
ar-
an
r
m

of
h
of

art-
nt-
ex-
nt
The exponent h' is computed via h'5 limt→`(1/
t)ln@d(t)/d(0)#, where d(t)5Ady(t)21@dvy(t)#2. In what
follows we will vary d and examine the dynamics in a regio
whereh' changes its sign.

Figure 1 shows the largest transverse Lyapunov expo
h' vs the parameterd for dP@23.5,21.0# in which h'

changes from negative to positive atdc521.75. Whend
.dc slightly ~we choosed521.70), the system shows mu
tistate on-off intermittency; whiled,dc slightly ~we choose
d521.85), the system has multistate intermingled bas
d5dc is just the blowout bifurcation point in our case.

As the parameterd is a bit smaller thandc , h' is slightly
smaller than zero and the chaotic motions in the invari
subspaces are transversely stable; then, multistate i
mingled basins can be observed. In Fig. 2, by fixingd
521.85, typical time series ofy(t) @2~a!# and vy(t)
@2~b!# from an arbitrary initial condition are plotted. Figur
2~c! shows the projection of the motion in thex-vx plane.
It shows a typical chaotic attractor of a forced-damp
Duffing oscillator ~5!. Sinced is slightly smaller thandc ,
after a certain transient the typical trajectory approac
one of invariant subspaces, which is a chaotic system
Eq. ~5!.
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Now the problem we are most interested in is to whi
invariant subspace the system asymptotically approaches
starts from an arbitrary initial condition. Figure 3 shows t
basins of attractors in the subspacesy5np2p/2(nPZ),
vy50 with different state numbern ~n is from 24 to 4! for
the initial conditions taken in the two-dimensional regio
21<@x,y#<1, with vx5vy50.1. The dots in different fig-
ures represent the initial conditions from which the cor
sponding attractors are asymptotically approached. App
ently, the basins of attractors are intermingled, since in
arbitrarily small vicinity of the basin of any given attracto
one can surely find initial conditions from which the syste
approaches other attractors~see Figs. 3 and 4!. We have tried
40 000 initial conditions arbitrarily chosen in the region
Fig. 3 and count the number of initial conditions from whic
the system can reach different attractors. The distribution
these initial conditionsNn is plotted in Fig. 5~a!, which fol-
lows a nice exponential decaye2nr @see also Fig. 5~b!#. It
shows that the particle can run very far away from the st
ing region. When we take the region of Fig. 4 for our cou
ing, the exponential relation remains the same; i.e., this
ponential decay law is an intrinsic and scaling invaria
feature of the system.
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FIG. 4. The same as Fig. 3 with20.1<@x,y#<0.1, vx5vy50.1 taken for the initial distribution. The riddled basin structure is furth
confirmed.
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IV. TRANSPORT PROPERTY OF THE ON-OFF
INTERMITTENCY STATE

As the parameterd increases throughdc , h' becomes
slightly larger than zero and the motions in the invaria
subspaces are no longer transversely stable. This leads
t
an

intermittent behavior: a typical trajectory spends a lo
time near one of the invariant subspaces and is repelled a
from this set, then can be attracted to another invariant s
space, and then repeats this on-off procedure again. In F
by fixing d521.70, typical time series ofy(t) @6~a!# and
vy(t) @6~b!# from an arbitrary initial condition are plotted.y
FIG. 5. ~a! The particle numberNn vs the index of the invariant subspacesn. ~b! The semilogarithm of ln(Nn) vs n(50>n>1), Nn

}e2nr, with r 50.18.
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FIG. 6. ~a!, ~b! The typical time sequencies ofy andvy vs t, respectively, withd521.70. They show obviously on-off intermittency. I
particular, the steplike behavior ofy(t) in ~a! manifests the characteristic of random walk in various states at multistate on-off intermitt
~c! The projection of the motion in thex-vx plane, which is almost the same as Fig. 2~c!.
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and vy are obviously of multistate on-off intermittency an
consequentlyy(t) has a steplike behavior which shows
typical random walk motion among different invariant se
Figure 6~c! shows the projection picture in thex-vx plane. It
still shows the typical chaotic attractor of a forced-damp
Duffing oscillator ~5! the same as Fig. 2~c!. Since d is
slightly larger thandc , the typical trajectory costs the mo
time near various invariant subspaces.

As the particle performs characteristic Brownian moti
in Fig. 6~a! when multistate on-off intermittency takes plac
it is interesting to study its transport property. We choo
2000 initial values withx, y, vx , and vy all being random
numbers between21 and 1, and plot the relation betwee
ln^y2(t)& and lnt. In Fig. 7 the relation obeys the followin
nice power law:

^y2~ t !&}t2H, ~7!

where H is the Hurst exponent which must satisfy 0,H
,1. In our case we getH50.46, which is close to the expo
nent for ordinary Brownian motion,H51/2.

Now we can compare the statistic behaviors of the sys
for different evolution stages in different situations: t
situation exhibiting multistate intermingled basinsd
521.85) and the other exhibiting multistate on-off interm
.

d

,
e

m

tency (d521.70). We run an ensemble of systems a
count how the occupations of different invariant subspa
vary as time. For smalld, d521.85, Figs. 8~a!, 8~b!, 8~c!,
and 8~d! show the occupation distribution att550, 100,
1000, and 4000, respectively. The initial conditions are a

FIG. 7. d521.70, ln̂y2(t)& vs ln t. Diffusion with the Hurst
exponentH50.46 is observed.
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FIG. 8. ~a!–~d! The dynamic statistics ofNn vs the state numbern, at different times,t550, 100, 1000, and 4000, respectively.d
521.85, and the total particle number is 10 000.
ify
at
e
sin
e,
taken from the two-dimensional region21<@x,y#<1, with
vx5vy50.1; the total particle number is 10 000. We ident
the occupation at thenth invariant setNn(t) as the number
of particles located in between (n21)p,y(t),np.
Clearly, at an early time, all of the particles concentrate
small n due to the choices of initial conditions. Then th
particles start diffusing because of the intermingled ba
structure. While the diffusion velocity dampens with tim
0.
FIG. 9. ~a!–~d! The same as Fig. 8, witht5200, 1000, 10 000, and 40 000, respectively.d521.70, and the total particle number is 160
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FIG. 10. ~a!, ~b! The typical time sequencies ofy andvy vs t, respectively, withd521.0, f 052.0. f 052.0 determines that there is
limit circle in each of the invariant subspaces, whiled521.0 determines that the invariant subspaces are all transversely stable.~c! The
projection of the motion in thex-vx plane.

FIG. 11. ~a!–~d! The same as Fig. 8, witht520, 100, 1000, and 4000, respectively.d521.0, f 052.0, and the total particle number i
1600.
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FIG. 12. ~a!–~c! The same as Fig. 10, withd520.6, which shows that the transverse direction is unstable. After the transient, the p
stays near one of the invariant unstable subspaces and oscillates there forever.
e
.

-
ly

d
e,
ll
for t→`, we get a stationary statistic distribution just lik
Fig. 5. Ford521.70, on-off intermittency becomes valid
Figures 9~a!, 9~b!, 9~c!, and 9~d! show the occupation distri
butions att5200, 1000, 10 000, and 40 000, respective
 .

Now the occupationsNn(t) do not approach a peaked an
localized distribution: rather, the distribution flattens as tim
and fort→` the density of distribution becomes zero for a
n and the particles can diffuse to infinity.
FIG. 13. ~a!–~d! The same as Fig. 9,d520.6.
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V. STATISTICS AND TRANSPORT FOR THE PERIODIC
BASIC STATE

In all the above sections we considered cases where
motion in the invariant subspaces is chaotic@Fig. 2~c!#. It is
worthwhile investigating what happens if the motion in t
invariant subspace is periodic. Now we takef 052.0; then,
the motion in the invariant subspaces is a limit circle. In F
10, by fixingd521.0, the transverse direction is stable. W
get typical time behaviors ofy(t) @10~a!# andvy(t) @10~b!#
from an arbitrary initial condition. Figure 10~c! shows the
projection of the system trajectory in thex-vx plane, and it is
a limit circle indeed. In Figs. 11~a!, 11~b!, 11~c!, and 11~d!,
we get the occupation distributions at thenth invariant set
Nn(t) at t520, 100, 1000, and 4000, respectively, in a sim
lar way as Fig. 8. The total particle number is 1600. We fi
also an exponential distribution; however, we should emp
size that basins of different attracting sets are now no lon
riddled by each other, but the fractal nature of the basins
be observed. Ford520.6, the transverse direction becom
unstable, and typical time series ofy(t) andvy(t) are plotted
in Figs. 12~a! and 12~b!, respectively. After the transient, th
particle stays near one of the invariant unstable subsp
and oscillates there. The dynamical behavior is essent
different from the multistate on-off intermittency when
strange chaotic attractor in each invariant subspace is id
fied ~Fig. 6!, which is a fractional Brownian motion in they
direction. Similar to computing the occupation distributio
in Fig. 9, we plot diagrams of the periodic basic state in F
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13 at t520, 100, 1000, and 4000, respectively. We find th
the distribution approaches a finite stationary exponen
distribution, and this localized distribution presents a striki
contrast to the distribution in Fig. 9 which flattens to zero
time goes to infinity.

VI. CONCLUSION

In summary, we have presented a physical model wh
exhibits intermingled basins and on-off intermittency of mu
tiple coexisting states when a single parameter is varied.
find that infinitely many basins of attractors can be riddl
by each other when the motions on the attractors are cha
and the system can wander among infinite states when on
intermittency occurs. With multistate intermingled basins
have a distribution diagram which shows clearly an expon
tial decay of the occupation distribution while in the case
multistate on-off intermittency the particle performs Brow
ian motion in they direction. In Refs.@21# and @22#, the
authors studied the chaotic itinerancy phenomenon betw
attractor ruins. Here our approach has been to address
distribution property and transportation behavior in the pr
ence of multi-intermingled basins and on-off intermittenc

This research was supported by the National Natural S
ence Foundation of China, the Nonlinear Science Projec
China, and the Foundation of Doctoral training of the Ed
cational Bureau of China.
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